TECHNICAL REPORT
CMU/SEI-2001-TR-025
ESC-TR-2001-025

20011113 066

Carncgie Mellon
Software Engineering Institute

Legacy System
Modernization
Strategies

Robert C. Seacord
Santiago Comella-Dorda
Grace Lewis

Pat Place

Dan Plakosh

July 2001

DISTRIBUTION STATEMENT A
Approved for Public Release
Distribution Unlimited




Carnegic Mellon University does not discriminate and Carnegie Mellon University is required not to discriminate in admission, employment, or administra-
tion of ils programs or activities on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil Rights Act of 1964, Title IX of
the Educational Amendments of 1972 and Section 504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition, Carnegie Mcllon University does not discriminate in admission, employment or administration of its programs on the basis of religion, creed,
ancoslry, beliof, age, veteran status, sexual orientation or in violation of federal, state, or local laws or executive orders. However, in the judgment of the
Carnegic Mellon Human Relations Commission, the Department of Defense policy of “Don't ask, don't tell, don't pursue” excludes openly gay, lesbian
and bisexual students from receiving ROTC scholarships or serving in the military. Nevertheless, all ROTC classes at Carnegie Mellon University are

available to all students.

Inquiries concerning application of these statements should be directed to the Provost, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA
15213, telephonc (412) 268-6684 or the Vice President for Enroliment, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone

(412) 268-2056.

Oblain gencral information about Carnegie Mellon University by calling (412) 268-2000.




——m CarnegicMecllon
—===  Software Engineering Institute

Pittsburgh, PA 15213-3890

Legacy System
Modernization
Strategies

CMU/SEI-2001-TR-025
ESC-TR-2001-025

Robert C. Seacord
Santiago Comella-Dorda
Grace Lewis

Pat Place

Dan Plakosh

July 2001

COTS-Based Systems

Unlimited distribution subject to the copyright.




This report was prepared for the

SEl Joint Program Office

HQ ESC/DIB

5 Eglin Street

Hanscom AFB. MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the interest of
scientific and technical information exchange.

FOR THE COMMANDER

Vit i

Norton L. Compton, Lt Col, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a
federally funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2001 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL 1S
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

printed 10/9/01 1:58 PM 1.0/ pw



Table of Contents

Abstract vii

1 Introduction 1
1.1 Goals and Objectives

2 Legacy System Structure 5
3 Adapters 7
4 Increment 1-Pre-Componentization 9
5 Development Plan 13
5.1 Incremental Deployment Method 15
5.2 Incremental Deployment Options 15
5.2.1 Code Migration 16
Transaction Sets 17
Program Elements 18
5.2.2 Database Migration 19
Database Migration Before
Code Migration 20
Database Migration During Code
Migration 21
Database Migration After Code
Migration 21
5.3 Deployment Strategy 23
5.3.1 Parallel Operations 23
5.3.2 Non-Parallel Operation 25
5.3.3 Comparison of Options 26
6 Modernization Trail Maps 29
7 Conclusions 31

CMU/SEI-2001-TR-025




References

Appendix: Trail Maps

Candidate Trail-T1 (A1 B1 C1)
Candidate Trail-T2 (A1 B1 C2)
Candidate Trail-T3 (A1 B2 C1)
Candidate Trail-T4 (A1 B2 C2)
Candidate Trail-T5 (A1 B3 C1)
Candidate Trail-T6 (A1 B3 C2)
Candidate Trail-T7 (A2 B1 C1)
Candidate Trail-T8 (A2 B1 C2)
Candidate Trail-T9 (A2 B2 C1)

Candidate Trail-T10 (A2 B2 C2)
Candidate Trail-T11 (A2 B3 C1)
Candidate Trail-T12 (A2 B3 C2)

33

35
35
37
39
41
43
46
49
52
54
56
58
61

CMU/SEI-2001-TR-025



List of Figures

Figure 1:
Figure 2:

Figure 3:

Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:

Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:

Figure 21:

Development Increments

Legacy System Modernization

1

1

Interoperation of the Modernized and the

Legacy Systems

Data and Control Flow in the RSS
Legacy System Adapters
incremental Releases
Transaction Set Code Migration
Program Element Set Code Migration
Database Migration

Parallel Operations

Non-Paraliel Deployment

T1 During Phase 1

T1 During Phase 2

T2 During Phase 1

T2 During Phase 2

T3 During Phase 1

T4 During Phase 1

T5 During Phase 1

T5 During Phase 2

T6 During Phase 1

T6 During Phase 2

2

6

19

24

26

36

36

37

38

40

42

44

45

47

48

CMU/SEI-2001-TR-025

iii



Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:

Figure 29:

T7 During Phase 1
T7 During Phase 2
T8 During Phase 2
T9 During Phase 1
T10 During Phase 1
T11 During Phase 1
T11 During Phase 2

T12 During Phase 1

50

51

53

55

57

59

60

62

CMU/SEI-2001-TR-025



List of Tables

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
Table 7:
Table 8:

Table 9:

Table 10:
Table 11:
Table 12:
Table 13:
Table 14:
Table 15:
Table 16:
Table 17:

Table 18:

Planned Increment 1 Releases
Development Phases

Incremental Deployment Options
Summary of Modernization Options
Sample Trail Map

Trail-Map Characteristics Summary
Candidate Trail-T1 (A1 B1 C1)
Candidate Trail-T2 (A1 B1 C2)
Candidate Trail-T3 (A1 B2 C1)
Candidate Trail-T4 (A1 B2 C2)
Candidate Trail-T5 (A1 B3 C1)
Candidate Trail-T6 (A1 B3 C2)
Candidate Trail-T7 (A2 B1 C1)
Candidate Trail-T8 (A2 B1 C2)
Candidate Trail-T9 (A2 B2 C1)
Candidate Trail-T10 (A2 B2 C2)
Candidate Trail-T11 (A2 B3 C1)

Candidate Trail-T12 (A2 B3 C2)

10
13
16
27
29
30
35
37
39
41
43
46
49
52
54
56
58

61

CMU/SEI-2001-TR-025




vi

CMU/SEI-2001-TR-025



Abstract

Modernization of legacy enterprise systems introduces many challenges due to the size, com-
plexity, and frailty of the legacy systems. Size and complexity issues often dictate that these
systems are incrementally modernized, and new functionality is incrementally deployed be-
fore the modernization effort is concluded. This in turn requires that legacy components op-
erate side by side with modernized components in an operation system—introducing addi-
tional problems.

In this report we discuss some alternative development approaches for incrementally modern-
izing legacy systems, including consideration of the advantages and disadvantages of each
approach. These development alternatives can be mapped against the peculiarities of a par-
ticular modernization effort to recommend an appropriate approach.

CMU/SEI-2001-TR-025 vii




viii

CMU/SEI-2001-TR-025



1 Introduction

Modernization efforts for legacy information systems are often large, multiyear projects that
pose significant risks. Information systems are critical to companies, and making a single
deployment of the modernized version is too risky to be admissible. Additionally, a modermni-
zation effort of a large system requires a significant investment in terms of money and time;
projects of this magnitude are strongly pressured to demonstrate early benefits. Figure 1 illus-
trates a typical example in which the modernized version of the system is developed and de-
ployed incrementally over a six-year period.

Increment 1
Increment 2
Increment 3
Increment 4
Increment 5

Figure 1: Development Increments

Incremental modernization of a legacy system is illustrated in Figure 2. Initially, the legacy
system consists completely of legacy code. At the completion of each increment, the percent-
age of legacy code decreases while the percentage of modernized code increases. Eventually,
the system is completely modernized.

Ongoing operations

<>

Legacy Legacy Ca Modemizec.l?;’

|Modernized| | Legacy |

Figure 2: Legacy System Modernization

CMU/SEI-2001-TR-025 1




Since modernized components are being deployed prior to the completion of the entire sys-
tem, it is necessary to combine elements from the legacy system with the modernized com-
ponents to maintain the existing functionality during the development period. Adapters and
other wrapping techniques may be needed to provide a communication mechanism between
the legacy system and the modernized system as shown in Figure 3.

COBOL to Java (adapters) |

>
Legacy Dependencies | Modernized
¢ R .

Java to COBOL (reverse adapters) |

Figure 3: Interoperation of the Modernized and the Legacy Systems

An incremental modernization effort strives to keep the system fully operational at all times
while reducing the amount of rework and technical risk during modernization. To balance
these conflicting requirements, a modernization effort needs to be carefully planned. Planning
a modernization effort involves more than creating a budget and setting up a few milestones:
a modernization plan must also contain the order in which the functionality is going to be
modernized, along with information describing the scaffolding code that must be created to

keep the system operational at all times.

The technical aspects of the modernization plan are what we call the modernization strategy.
In this report we describe a case study that involves the creation of such a strategy for the
modernization of a large Retail Supply System (RSS).

The RSS consists of approximately two million lines of COBOL! code running on a main-
frame. The overall architecture of the system has remained largely unchanged over 30 years,
resulting in a system that is extremely brittle and difficult to maintain.

' COBOL (COmmon Business Oriented Language) was initially developed by the CODASYL
(Conference On DAta SYstems Languages) Committee in April 1960. Major revisions were made
in 1968 (ANS X3.23-1968), 1974 (ANS X3.23-1974), and 1985.

2 CMU/SEI-2001-TR-025



The information system life cycle is illustrated by Comella-Dorda, et al. [Comella 00]. These
system evolution activities can be divided into three categories: maintenance, modernization,
and replacement [Weiderman 97]. In many respects, the RSS is a typical information system
following a similar life cycle. While development of the replacement system is underway,
both maintenance and modernization efforts are being performed in parallel. The moderniza-
tion work is an effort to “prep” the legacy system for replacement. The practical implication
for this is that the end state as well as the starting state of the replacement effort may be unde-
fined.

1.1 Goals and Objectives

In addition to the overall goal of modernizing the legacy RSS, and the necessity of following
an incremental development approach, there are other modernization drivers:

e minimized development and deployment costs. Fielding modernized components along-
side legacy code requires the development of adapters, bridges, and other scaffolding
code that will be discarded after the final increment. While necessary, scaffolding code
represents an added expense, as this code must be designed, developed, tested, and main-
tained during the development period. Minimizing the development of scaffolding code
is one way to minimize overall development costs.

e schedule. The modernization strategy should seek to minimize the time required to de-
velop and deploy a modernized RSS. Additionally, the approach should allow the RSS to
be developed on a predictable schedule.

e quality. There are two issues regarding quality. One issue is the quality of the final, end-
state system, once the RSS modernization effort has been completed. The final system
should be easy to maintain and implemented around technologies that are not already ob-
solete. The second issue is the interim quality of the system, after each increment is de-
ployed. Given the length of time required to complete the modernization, there will be
many opportunities for the program to lose funding, be redirected, or take on a new fo-
cus. It is important that fielded increments improve the overall quality of the system,
since there is always the possibility that each increment will be the last, given the length
of time required for the development effort and normal uncertainties about changing
business practices and requirements.

e  minimized risk. Risks occur in many different forms, and some risk is acceptable if prop-
erly managed and mitigated. Due to the overall size and investment required to complete
the RSS development, it is important that overall risk is kept low. To this end, the RSS
componentization strategy should apply tried and proven techniques when possible, and
lower risk approaches when some risk is necessary to achieve overall system goals.

e system performance. The RSS is replacing an existing system, so users have expectations
concerning performance. While RSS moderization includes the modernization of hard-
ware as well as software components, it is easy to negate hardware performance gains
with poorly designed software. The componentization strategy must ensure that user per-
formance expectations are met or exceeded.

CMU/SEI-2001-TR-025 3




minimized complexity. Depending on how it is counted. the RSS consists of up to 1.8
million lines of legacy COBOL code, developed over a period of 30 years. The size of the
RSS is a major complexity factor by itself. As a result, it is critical that the componentiza-
tion strategy seeks to minimize overall system and development complexity, so that de-
velopment complexity is kept at a manageable level. Managing the complexity of the de-
velopment approach. by itself, may be the single largest factor that dictates the viability

of the overall RSS modernization effort.

CMU/SEI-2001-TR-025



2 Legacy System Structure

Understanding the structure of the legacy RSS code is a necessary prerequisite to developing
a componentization strategy. The RSS currently runs on a Unisys 2000 platform and was
developed in Unisys COBOL on top of the Unisys Data Management System (DMS)
database.

The existing RSS consists of approximately 900 program elements, each containing on aver-
age of 3000 lines of COBOL code. Dependencies exist between legacy program elements,
and between legacy program elements and the legacy data store.

Program elements invoke other program elements using the COBOL CALL statement. The
CALL statement transfers control to another program in the executable image. The RSS also
uses the COPY statement to provide a library of COBOL source elements that are accessible
by referencing text names. The COPY statement is similar to an INCLUDE statement in C or
C++ (or macros in many languages). The RSS also uses PERFORM statements to execute
one or more paragraphs. Control is returned to the next statement after the PERFORM state-
ment when the paragraph execution ends.

Program elements interact with the DMS database using one of four operations:

e STORE - stores a new record in the database FETCH - a combined FIND and GET op-
eration that establishes a specific record in the database as the current record of the run
unit

e MODIFY - changes the contents of specified data items in a database record

e DELETE - logically removes a record from a mass storage file

Figure 4 illustrates both data flow and control flow in the RSS. Program elements typically
fetch records from the DMS database into common storage. Then these data records may be
completely or partially transferred from common storage to working storage where they can
be operated on by the application program elements. Modified data may be placed back in
common storage, and control passed between program elements, using common storage as a
way to pass data between program elements.’

2 This is similar to the use of shared memory in System V UNIX.

CMU/SE!-2001-TR-025 5




Application € — Application

Working | Common | Working -
Storage - Storage ~Storage

« -’ Data flow

<4—) Control flow

Figure 4: Data and Control Flow in the RSS

Eventually, data is written from working storage back to common storage. A program element
may perform a STORE operation to create a new database record or a MODIFY operation to

update an existing record.

Figure 4 may be misleading in some ways, since it is a fairly straightforward illustration of
data and control flow in the RSS, when in fact there are many internal complications that
make it more difficult to understand legacy data flows. Foremost among these is poor data
encapsulation. Any program element can read and write to a database record. Many of these
relationships can be easily identified by searching for STORE, FETCH, MODIFY, and
DELETE operations in the source code. However, program elements can indirectly affect
data stored in the database by modifying information in common storage that is then written
to the database by a different program element. Understanding data flow in this environment
requires considerably more in-depth and focused analysis.

Other complications include the use of FILLER space to hold data, and REDEFINES that
allow the same common storage area to be accessed using different names. Both of these
complications can make it more difficult to identify and manage data flow in the legacy sys-

tem.

6 CMU/SEI-2001-TR-025




3 Adapters

In the introduction, we introduced the need for adapters to provide a communication mecha-
nism between the legacy system and the modernized system. In this section, we provide a
further analysis of the composition of these adapters.

Parameters

!

Program element shell
Common ]
Storage CoBOL EJB1
| Format parameters |
Invoke method »
Database Java
Class L
coBOL ] | EJB2
Retrieve return
values
Common| Update common
Storage storage

Figure 5: Legacy System Adapters

Figure 5 shows the composition of an adapter that is used to satisfy a dependency on a pro-
gram element that has been re-implemented as Enterprise JavaBeans (EJBs). In broad terms,
the adapter must satisfy the external requirements of the program element and provide a
mapping between legacy and modernized functionality.

The adapter satisfies the external requirements of the legacy program element in the shell.
The shell is typically written in the same programming language as the remainder of the leg-
acy system, and supports the same calls and accepts the same parameters as the legacy pro-
gram element. The shell is also responsible for extracting required information from common
storage and the database and formatting this information so that it may be passed as parame-
ters to a Java class. The Java class invokes the necessary sequence of methods in the EJBs to
execute the functionality extracted from the legacy system program element. The adapter al-

CMU/SEI-2001-TR-025 7




Jows functionality in the modernized system to be decomposed differently than in the legacy
system. The complexity of the adapter may vary, depending on how different the modernized
architecture is from the legacy architecture. The adapter must absorb these differences for the

modernized system to remain free of legacy constraints.

Once the Java class has invoked the necessary EJB methods, control is returned to the
COBOL shell. This shell must now modify common storage according to the changes that
would have been made by the replaced legacy program elements. Once the shell returns con-
trol to the calling program, common storage must contain exactly the same information it
would have contained had the legacy program element executed. Fortunately, it is not neces-
sary for the legacy component to update the Oracle database, as these modifications are made
directly from the EJBs through the persistence layer in the EJB server.

In building adapters, one must also consider that the adapter is not only replacing the legacy
program element, but also all the program elements upon which it was dependent. In other
words, by the time the adapter returns control to the calling program, all database modifica-
tions and changes to common storage performed by the legacy program element, and all its
dependent program elements, must still be accomplished. To some degree, the functionality
and database modifications should be implemented through a logical decomposition of activ-
ity in the modernized system. However, as the EJBs have no knowledge of, or access to,
common storage, these updates must be made by the COBOL shell upon return from the Java

class.

8 CMU/SEI-2001-TR-025




4 Increment 1-Pre-Componentization

RSS is being modernized in two major increments. The first increment is designed to prepare
the system for the latter, more comprehensive componentization effort. The initial phase pri-
marily involves migrating the legacy code onto a modern hardware/operating system plat-
form and migrating from the Unisys DMS database to a relation database management sys-
tem. The second phase will involve converting the system to a modern architecture and
programming language.

Considerable effort is being exerted to migrate the existing legacy system off the Unisys plat-
form and onto more modern hardware. The completion of this work is urgent, because of ex-
cessive Unisys platform maintenance costs. As a result of this ongoing cost, the emphasis is
on a quick migration to the modern hardware.

Since quick migration off the Unisys platform is a priority, several constraints are imposed on
the Increment 1 development. Changes to the legacy system are minimized, and the database
schema is changed as necessary to move from DMS to a relational database.

Increment | modernization is scheduled in four releases. Table 1 shows target goals for each
release.

CMU/SEI-2001-TR-025 9




Table 1:  Planned Increment 1 Releases

Web/GUI (Release 1) Reports (Release 2)

e  Web-enable all RSS screens. e Data analysis output is used to migrate re-

e Build one component of GUI functional- ports data to Oracle.

ity (e.g., Inquires). e Reports module analysis defines require-
ments to be satisfied by Oracle tools.

e  Using Oracle or other COTS tools, build re-
ports based on Oracle reports data.

e Build interfaces and reports GUI

Account & Financing (Release 3) Migrate Inline (Release 4)
e Based on system inventory & analysis— | ¢ Remove Unisys dependencies.
remove accounting & financing code. e Migrate data and data access to Ora-
e Add third GUI component. cle/relational database.
e Eliminate redundant code. e Roll existing functionality to MicroFocus
COBOL.

e Port system to Solaris platform.

The primary goal of Increment 1 is to move off the Unisys platform as quickly as possible. To
move the RSS off the Unisys mainframe it is necessary to isolate, eliminate, and replace
functionality that is currently performed by the Unisys operating system or proprietary soft-
ware on the Unisys platform. While evaluating candidates for replacement components, it is
beneficial to understand the Increment 2 componentization strategy, since this strategy will
invariably require deploying the release 4 system alongside modernized components. For ex-
ample, how will control flow between the legacy and modernized systems? There are several
possible solutions, including using MQSeries, CORBA, or direct COBOL-to-Java language
bindings. How will data be synchronized between the legacy and modernized databases?
How will the transaction context be maintained between the legacy and modernized systems?

Consideration of these questions may lead to the selection of components that are compatible
with the modernized system and may reduce the effort required in Increment 2. Selection of
these components has to be made with consideration as to how this will impact the Increment
1 schedule. Delaying the system migration from the Unisys platform to Solaris has an easily
quantifiable Unisys maintenance cost. Using the wrong product may require an additional
development increment between Increment 1 and Increment 2 to prepare the RSS for mod-
ernization. This will certainly increase development costs and lengthen development sched-

ules.

10 CMU/SEI-2001-TR-025




Components that support the Increment 2 componentization strategy without adding time to
the Increment 1 schedule can be adopted with little consideration. Components that support
the Increment 2 componentization strategy but require extra time to complete must be evalu-
ated on a case-by-case basis. To select a component in this case requires a convincing argu-
ment that development costs saved in Increment 2 would exceed costs incurred in delaying
fielding of the 1.4 version of the system.

A desired artifact of Increment 1 development is to gain a greater understanding of the legacy
system and to use this acquired knowledge to define the desired architecture of the future sys-
tem. These benefits are lost, to some degree, if different individuals are involved in the In-
crement 1 and Increment 2 efforts, although some of this knowledge, if properly recorded,
can be successfully transferred.

CMU/SEI-2001-TR-025 1




12

CMU/SEI-2001-TR-025



5 Development Plan

Complexity in the RSS program is not limited to the source code, but extends to the overall
development plan. Before getting into details of the development and deployment approach,
we will describe the overall context and define some process-related terms.

The overall RSS modernization effort is divided into two increments. The goal of the first
increment is to quickly migrate the existing code base off the legacy, Unisys hardware plat-
form and onto an open systems platform. This is critical for the overall program because of
the high cost associated with maintaining the legacy hardware. Money spent on maintaining
the existing system comes out of the overall budget, with the result that fewer funds are
available for modernization.

Increment 2 is the modernization effort and assumes the completion of Increment 1. Incre-
ment 2 is divided into phases. Each phase represents a different emphasis or focus; for exam-
ple, a focus on modernizing the structure of the database or on migrating code. The exact
number of phases depends on the incremental development strategy option employed. Table 2
is an example of a three-phase development plan. In this example, the database is restructured
first, followed by the code migration. In the final phase, the system is verified and then de-
ployed as the operational system.

Table 2: Development Phases

Development Phase 1 Phase 2 Phase 3
Tasks
Restructure DB - restructure —— restructure - restructure |—

[by transaction]{ by transaction
Componentization OR OR

[by application ] i[ by application |

iparallel ops | :parallelops. | [parallel ops

OR OR OR

operational operational loperational

Deployment

A 4

Time

CMU/SEI-2001-TR-025 13




Within each phase, the RSS will be incrementally developed and operationally deployed as
shown in Figure 6. This means. for example. that there may be multiple, incremental releases
during the code-migration phase as well as during the database-migration phase. Each of
these releases is a candidate for deployment.

<
Incremental
_Pha_lse 1 releases
Application-based A2
componentization
l‘ Incremental
Phase 2 releases B3
Database
migration

Figure 6: Incremental Releases

There are various advantages and disadvantages to incremental development and deployment.
Incremental development should reduce overall program risks by allowing both users and
developers to gradually understand the new system. Lessons learned from the first increment
can be applied to prevent mistakes from reoccurring in later increments. Smaller steps should
be easier to manage; it’s also easier to evaluate progress against them. Smaller increments
should also result in more focused effort.

Incremental development also has disadvantages. Theoretically, building a system in a single
increment minimizes development and deployments costs, as it is only necessary to system
test and deploy a single system. System testing and deployment have fixed costs that do not
vary widely based on the size of the increment. These fixed costs are incurred for each in-
crement. In practice, a single development/deployment cycle does not always result in lower
development costs because of the added complexity of completing the entire project at one

time.

14 CMU/SEI-2001-TR-025




Another problem with incremental development is that it is likely to cause the target architec-
ture to resemble the legacy architecture. This is because the legacy system must be separated
into sections that will be replaced. This initial separation of functionality is typically per-
formed along the lines dictated by the legacy architecture. As the number of increments in-
creases (and the corresponding size of each increment decreases), legacy and modernized

architectures tend to converge.

Depending on the componentization strategy followed, an incremental development approach
may also result in multiple restructuring of the database. Restructuring of the database has
implied costs, including rework and the necessity to migrate the “new” legacy data that will
be created after each incremental deployment.

5.1 Incremental Deployment Method

The RSS will be deployed over a series of increments, making functionality available to the
user sooner than possible with a big bang development/deployment strategy. The goal is to
break up the migration to the future system into small manageable steps, where the objectives
of each increment are well defined.

Incremental deployment plans are driven foremost by complexity and technical feasibility. It
is critical to ensure that the functionality, reliability, and performance of the system are not
diminished after a deployment has completed.

Incremental deployment also offers opportunity for the organization to gradually begin sus-
tainment of modernized components, easing the transition from legacy to modern technolo-
gies.

5.2 Incremental Deployment Options

There are many different approaches to incremental deployment. After some consideration,
we determined that these approaches could be characterized by how they addressed the prob-
lems of code migration, database migration, and deployment. Table 3 lists these problem ar-
eas as well as potential solution strategies. Selecting a strategy for each problem area, Chi-
nese-menu style, can form a componentization strategy. Of course once these answers are
selected, they have to be considered in their entirety. Certain groups of answers have more
cohesion when taken together and some have less. After examining the characteristics of each
individual decision, we examine the combinatorial effects in Section 6.

CMU/SEI-2001-TR-025 15




Table 3:  Incremental Deployment Options
Code Migration

Al Based on transaction sets

A2 Based on existing program elements
Database Migration

B1 Before code migration

B2 During code migration

B3 After migration

Deployment
C1 Deploy each increment in parallel with the modified operational Phase 1 system

C2 Deploy each increment as the operational system

5.2.1 Code Migration

The first question that must be answered is the code migration strategy. This has a significant
impact on how the modernization effort will proceed. Invariant in this selection is the target
architecture, which is predefined based on a set of desired and objective system qualities.

Code can be migrated from the legacy system to the modernized system based on transaction

sets or existing program elements.

Transactions, in this sense, are requests from users or external systems. The RSS defines a
collection of transactions that are identified by two-letter codes. A series of program elements
are then invoked to execute the transactions. Transactions may also spawn additional transac-
tions within the system. The idea behind this code migration strategy would be to implement
the transactional logic in the modernized system. At the same time, we could theoretically
disable or remove the transactional logic in the legacy system. However, there are many is-
sues to consider in taking both these steps.

The first of these issues is the database. The transaction we migrate is likely to read, create,
or update records from one or more tables in the legacy database. Unfortunately, we cannot
assume that this transaction is the only transaction that will modify these tables. That means
that this data must exist and be accessible from both the modernized and legacy systems.
Furthermore, changes that occur in one location must be propagated to the other.

The second problem is in removing code in the legacy system. It cannot be generally as-

sumed that code that performs a function, as part of a user transaction, is not also executed as
part of a different transaction. Therefore, analysis must be performed to ensure that this code
is not required elsewhere. Removing code fragments or program elements may also introduce

instability into the fragile legacy system.

16 CMU/SEI-2001-TR-025



Luckily. removing code is not a strict requirement of this approach. Legacy code can just be
left in place and used as required to execute transactions that are still operating within the
legacy system. Finally, after all functionality is moved to the modernized system, the legacy
code can be discarded in bulk with no ill effects.

Transaction Sets

For the code migration to be successfully based on transaction sets, several conditions must
be met. Most transactions must be localized to a small subset of program elements. If most
transactions require most of the program elements to execute, it will be too difficult to mi-
grate transactions in a single increment.

The second requirement is that componentization will not force the fragmentation of single
program elements between COBOL and Java/EJB (i.e., the transition of only a part of an ap-
plication to Java/EJB). Reengineering legacy components in this manner would add signifi-
cant costs to the overall modernization effort.

Transaction Shell

Applications involved in
transaction

H06; 1118

L e

123 A

BO 2

Figure 7: Transaction Set Code Migration

Figure 7 shows how code can be migrated using transaction set deployment.

There are both advantages and disadvantages to transaction set deployment. One of the ad-
vantages is that this approach increases the likelihood that the system will closely match the
initial target architecture. Another advantage is that this approach can result in less develop-
ment time, cost, and increments when compared to the application-based approach.

CMU/SEI-2001-TR-025 17




The disadvantages of this approach are that it can increase the complexity of incremental de-
velopment (modifications will be more global in nature) and that it may come close to a one-
step deployment by forcing the transition of large amounts of functionality in one increment.
This in turn would provide less opportunity to refine the target architecture based on lessons
learned (due to the possible transition of a larger amount of functionality at once).

Program Elements

Successful migration of the legacy code based on sets of program elements depends on the
ability to link remaining legacy program elements to the new business objects while provid-
ing the same functionality. Program elements can be split across business objects, and busi-
ness objects can be deployed while still incomplete—as long as the overall functionality of

the system remains intact.

This approach may require some rework of business objects as the system evolves.

Legend
program
element

O = Business
object

121B = Migrated
functionality

(208" = Future
pO migration

= Legacy
shell

Figure 8: Program Element Set Code Migration

18 CMU/SEI-2001-TR-025



Figure 8 illustrates code migration by program element sets. A legacy component (121) is
scheduled for modernization. Functionality performed by 121 is re-implemented as part of
the modernized architecture as shown on the right. However, the 121 component is still in-
voked by the 345 program element and invokes the 129 component element, neither of which
has been modernized in this example. In this case, it is necessary to develop a shell and
adapter for the 121 program. The shell ensures that the external interfaces of the 121 program
element are maintained. The adapter accepts requests from the 121 shell and invokes methods
in the modernized components to implement this functionality. Results can then be returned
to the 121 shell, which will use this data to satisfy its external requirements.

5.2.2 Database Migration

The second question to consider when deciding on a database migration strategy is when to
modernize the database. Like other aspects of the legacy system, the database schema has
evolved over time, and not necessarily in an optimal fashion. One of the goals of the mod-
ernization effort is to improve the representation of data in the database to eliminate redun-
dancy, improve performance, reduce storage requirements, and reduce the potential for data-
base anomalies.

In general, there are no guarantees about the structure of the modernized database. It is likely
that some existing database tables will be split up, while others will be grouped together.
New database tables will be created and existing tables eliminated. This may potentially re-

sult in a very complex relationship between database fields in the legacy and modernized sys-

tems.

axg)

Existing \ -
DMS \
Oracle
analog \

- Final Oracle
structure
Oracle
mix of \ -
structures

End of Phase-1

Figure 9: Database Migration

CMU/SEI-2001-TR-025 19




There are three options for database migration: before, during, and after the code migration.
Regardless of which strategy is adopted, the database will pass through a series of states as
shown in Figure 9. Initially, data is stored in CODASYL format® on the DMS. The first step
in the database migration is to migrate this data to an equivalent relational form that can be
maintained in the Oracle database. This translation alone requires significant modification to
the structure of the data, as the modern relational model varies significantly from the

CODASYL model.

The next step is to start to replace the database schema reflecting the legacy tables, with a
modernized database schema. As the legacy system consists of close to 900 different database
tables, this replacement must be viewed as a gradual process. This does not necessarily mean
that a database consisting of mixed structures will be deployed. Eventually the entire data-
base will be migrated to the modernized structure as shown in the lower right-hand corner of

Figure 9.

Database Migration Before Code Migration

Database tables can be migrated before, during, or after the code is migrated. Migrating the
database before the code is migrated has some advantages. Completing the database migra-
tion up front certainly simplifies the code migration. Modernized code can be developed to
the target data architecture, and does not have to be mapped to legacy data elements. Migrat-
ing the database first is also clearly more of a focused effort with a single goal. Finally, mi-
grating the database tables first reduces the risk of retaining the legacy architecture, since the
eventual code migration will be based on the new database schema.

At this point migrating the database tables first appears to be a viable option, but unfortu-
nately there are also numerous disadvantages to this approach. Migrating the database first
may then require the restructuring of the legacy system to accommodate the modified tables.
This is a major concern, as a principal reason the legacy system is being modernized is be-
cause of its lack of maintainability. Attempting a major restructuring of the legacy code to
support the new database schema is extremely risky.

Migrating the database and restructuring the legacy code will consume considerable amounts
of the schedule and resources available to the project. As a result, converting the database
before beginning componentization can only be attempted if the target database schema is
well understood and architecturally sound. This may be extremely difficult to validate given

the magnitude of the system.

3 acirca 1970 database model that, while antiquated by most measures, was the first to allow one-
to-many relations

20 CMU/SEI-2001-TR-025



Since a large investment must be made to migrate the database up front, there will not be
much latitude for further refinement of the database. This means that the project will more or
less have to live with this initial assessment. Changes to the database will require more
changes to the legacy system and possible restructuring of the modernized code. In general,
this is a high-risk approach that depends largely on “getting it right the first time.” If you do
not have a high degree of confidence in your understanding of the data requirements for the
modernized system, this may not be the best approach.

If the database is converted before code migration, the legacy system has to be rewritten to
use this new database schema. In the end, this will result in less opportunity to evolve the
architecture as necessary to support the system requirements.

Database Migration During Code Migration

Theoretically, this is the least expensive approach, since it requires minimal rework. This as-
sumes, however, that performing both tasks simultaneously is not beyond the ability of the
programming staff. This is because tackling both the data migration effort and the code mi-
gration effort simultaneously expands the focus of each increment and adds to the complexity
of the effort. To modernize a component in this approach, for example, would require that
you implement functionality in your modernized system, disable the corresponding function-
ality in the legacy system, implement a new database schema in the modernized system, mi-
grate the data from the old to the new database schema, and update the legacy system to work
with the new database schema and modernized code. This becomes particularly difficult
when data elements or logic cannot be easily untangled from the legacy system. This ap-
proach can easily degrade to a “big bang” approach, where all legacy functionality is mi-
grated in a single increment. This may not be feasible if you are under pressure to demon-
strate progress by fielding increments before the entire system can be modernized.

Database Migration After Code Migration

Migrating the database after code migration has some interesting advantages. One advantage
is that it provides additional time to refine the database schema. Of course, taking this ap-
proach requires that you construct modern components using the legacy database schema.
Doing so is possible by using the persistence layer, which defines a mapping between state
data in a component and the persistent store. In theory, a modernized system could be devel-
oped that only used component/object interfaces to access data elements. The persistence
layer in these components can then map state data in the components to fields in the legacy

CMU/SEI-2001-TR-025 21




system database. This works well in most cases, although there may be some cases where this
breaks down, such as reports that need to directly access the database structure”,

Although isolating dependencies on the legacy database to the persistence layer can simplify
the migration of the database after the code migration, code in the persistence layer will still
require modification. This effort will involve replacing fairly complex code that needs to map
between state data and fields in one or more legacy database tables with fairly straight-
forward calls that provide a direct mapping between state data attributes in the component
and the database tables. The eventual mapping between component state data and the data-
base schema should be relatively straightforward, because the database schema does not need
to be fully specified until after the code migration has been completed.

The persisténce code that maps to the legacy database structure may also be quite slow, as
this code assumes a “to be defined” state in the system that must be emulated using the leg-
acy system data structure. This should not be too big of a problem, as long as the interim per-
formance of the system is acceptable and the development effort runs to completion (i.e., the
database-migration phase is eventually implemented).

It may be possible to optimize this approach when a table is completely moved to the mod-
ernized system. However, this may be trickier than it seems. The first requirement is that no
application elements that access this legacy table remain in the legacy system at the end of
the increment (since the table will no longer be there). The state data maintained in the new
component may have one of several relationships to the table being replaced:

1. It may contain the identical information (i.e., for every field in the legacy table the same
field exists in the new table).

2. It may be a superset (i.e., it may contain all of the information plus some additional in-
formation).

It may be a pure subset.

4. It may contain a subset of information from the other table, plus some additional infor-
mation.

In the first case it is not necessary to migrate the table, since it is already in its final form. In
the second case, it may be possible to migrate to the new table, since all the data is moved. In
the third case, you would have to make sure that the remaining information was also included
in the increment, and in the fourth case you would need to make sure of that as well as map-
ping some of the new table back to a legacy table.

4 Lewis, G, Comella-Dorda, S., Place, P., Plakosh, D., Seacord, R. Data Architecture Guide for the
ILS-S System. Pittsburgh, PA: Software Engineering Institute, to be published.

22 CMU/SEI-2001-TR-025




Eventually this line of optimization results in a modernization strategy where you are migrat-
ing the database at the same time as you are migrating the code. This option was discussed in

the previous section.

5.3 Deployment Strategy

The RSS will be deployed in at least five increments. Each time new functionality is de-
ployed to the field there is an operational risk that the system, including both modernized and
Jegacy components, will not function properly once deployed. Deploying each increment in
parallel with the modified operational legacy system can mitigate these risks. Alternatively,
these risks may be viewed as acceptable when considered against the additional costs and
development risks introduced by parallel operations, as well as deploying each release di-
rectly to the field as an operational system. Each of these options is analyzed in the following
sections.

5.3.1 Parallel Operations

One way to reduce operational risk is to continue to run the previous version of the system in
parallel with the current release, as shown in Figure 10. In this approach, the modernized sys-
tem is put into operation, but the legacy system is maintained as a “hot” backup. If the new
system fails to function properly, control can be switched over to the legacy system. This so-
lution provides a fallback capability that allows the new increment to be verified and tested
online.

Parallel operations also provide the following benefits:

e allow users to compare both interfaces
e can aid in system verification
e minimize disruption to users

Of course, for this approach to be feasible the legacy system must have access to the latest
data. Providing this access can be problematic, because the format and structure of the data-
base tables may have changed between incremental deployments.

CMU/SEI-2001-TR-025 23




G2 @

BO 2

Orécle
Triggers

Table D

Table E

| Table A"
: Table F

>

Legacy Phase-1 Database New Database

Figure 10: Parallel Operations

The databases can be synchronized through the use of data replication. Whenever the mod-
ernized system makes a change to a local table, synchronous row-level replication can be
used to synchronously propagate the change to the legacy database using internal triggers
[Bobrowski 97]. Other options may be available—such as loose synchronization through
timed database conversions while copying.

Deploying in parallel can reduce operational risks, but care must be taken not to corrupt the
legacy system while “wiring” the two systems together. The introduction of complex trigger
mechanisms, for example, could easily inject defects into the legacy system. In general,
changes to the legacy system should be minimal and non-pervasive. Another concern is the
performance overhead incurred in invoking triggers to update multiple database tables as a

result of each update.

Figure 10 shows the operational system after the initial deployment of new functionality.
However, after the second release there could be a new problem if the “operational” system is
the previous version of the new system deployed in the first increment (which consists of
both legacy and modernized components) instead of the original legacy system. This situation
should be avoided, because it adds significant complexity and risk to the development effort.

In most cases, it is better to keep the existing legacy system with every new deployment in-
stead of having the system from the previous deployment become the legacy system.

24 CMU/SEI-2001-TR-025



After the modernized system has been deployed and run in the field for some time, and its
operations have been validated, the legacy system and modernized system can be decoupled,
and the modernized system can be allowed to run on its own.

While parallel operation can reduce operational risk, it can also increase development risk,
degrade performance, and significantly increase maintenance costs. Difficulties may arise in
data synchronization and locking between the modern and legacy systems that can increase
development costs and impact the schedule.

When deploying in parallel, each incremental release of the system is deployed alongside the
legacy system. This is true until the operational status of the final release is verified and the
backup system can be stood down. This has several implications for the overall life cycle of
the system. First, it is necessary to maintain two separate databases from the time the initial
system is incrementally deployed until the backup system is stood down, increasing mainte-
nance and support costs over the life of the project. Finally, code and database changes must
be removed from the completed system.

Parallel operations often make sense when the cost of any downtime in the modernized sys-
tem is substantial and are most feasible when the following assumptions hold true:

e Resolving any database locking and synchronization issues is not very complex and is
technically feasible.

e No major code changes or restructuring of the legacy system is required.
e The performance degradation to the legacy system will not significantly impact users.

e Both systems can be maintained simultaneously.

5.3.2 Non-Parallel Operation

Another deployment strategy is to deploy each development increment as the operational sys-
tem, as shown in Figure 11. In this approach, the deployed system consists of modernized and
legacy components.

Non-parallel deployments typically provide the following benefits:

e reduce cost and development time

e force all users to use the new system immediately (may increase acceptance)
e do not inject additional technical and software development risks

CMU/SEI-2001-TR-025 25




|

_TableA| | TableD Table E'| | TableF - Table G

Figure 11: Non-Parallel Deployment

The major disadvantage to this strategy is that there is no fallback mechanism in the event of
a system failure. Therefore, this approach requires that the software quality is sufficient for
deployment and that those development increments that are candidates for deployment are
completely verified and tested prior to deployment as the operational system.

5.3.3 Comparison of Options

Next we present a comparison of the different modernization options presented with respect
to the following qualities:

e cost

schedule

risk

performance

complexity

interim quality

A comparison chart is shown in Table 4. The up, down, and sideways arrows indicate how
each option within a particular group will most likely affect each of the characteristics de-
scribed. An up arrow indicates an increase in a quality; likewise a down arrow represents a
decrease in a quality; and the sideways arrow represents no change. An up or down arrow can
be good or bad depending on the quality. For example, an up arrow in cost would be consid-
ered to be bad, while an up arrow in performance would be considered to be good. Character-
istics with more than one arrow are significantly impacted and should be given more weight.

26 CMU/SEI-2001-TR-025



Table 4:

Summary of Modernization Options

Option

Characteristics

Cost

Schedule

Risk

Perfor-
mance

Com-
plexity

Interim
Quality

A1l Develop components
based on transaction sets.

4

4

&

ﬁ*

A2 Develop components
based on existing appli-
cations.

<

B1 Migréte database formats
‘before componentization.

‘B2 Migrate database formats
- during componentization.

B3 Migrate database formats
after componentization.

>(¢|8| =

& 2

EIEIE IR
slwle) e

@la|=

C1 Deploy each increment so
that it runs in parallel
with the modified opera-
tional Phase 1 system.

i)

=

43

iy

C2 Deploy each increment as

the operational system. hd N i A « «
Symbol Meaning
1 Increase & Decrease &No Change
Indicates that the increase or decrease in the particular quality is marginal at best and should not
be heavily weighed.
*  Indicates a decrease in operational risk but an increase in developmental risk.
CMU/SEI-2001-TR-025 27




28

CMU/SEI-2001-TR-025



6 Modernization Trail Maps

A trail map is a time-phased modernization approach, consisting of up to three phases, that
implements a set of the modernization options enumerated in Section 5.2. For example, the
trail map in Table 5 shows componentization by transaction (A1), restructuring of the data-
base after componentization (B3), and parallel deployment with the operational system (Cl).
The appendix contains the twelve trail maps used to evaluate the various combinations of
options.

Table 5: Sample Trail Map

Development Phase 1 Phase 2 Phase 3
Tasks

fby transaction. | [by transaction]
Componentization OR OR
[ by application | i by application |

parallelops | fparallel ops: | [parallel ops

Deployment OR- OR: ——OR—
[operational] [operational] ;operational
Time >

A group was convened to evaluate the modernization options outlined in the appendix with
respect to cost, schedule, risk, and complexity. The trail-map characteristics summary shown
in Table 6 was used as an initial starting point for discussion.

The group eventually reached general consensus on Trail Map 12, shown on page 61. This
option calls for componentization by application followed by a restructuring of the database.
At the end of each phase, the system is deployed as an operational system.

CMU/SEI-2001-TR-025 29




Table 6:  Trail-Map Characteristics Summary

Characteristics
frail Cost | Schedule | Risk | Complexity gt::gl PenI‘;‘l()t:;il::lce
T1 - (A1 B1 C1) ] 1) 4 ) T 4
T2 - (A1 B1 C2) 4 4 ° & =3
T3 -(A1B2C1) 1) 4 T o 4 4
T4 - (A1 B2 C2) 4 2l T i < <
T5 - (A1 B3 C1) i) 4 4 T 4 4
T6 - (A1 B3 C2) Aad 4 T i & &
T7 - (A2B1C1) ) i 4 & 4 4
T8 - (A2 B1 C2) i i) U 4 & @
T9 - (A2 B2 C1) 1) i 4 1 4 u
T10 - (A2 B2 C2) i) 8 T & 4 &
T11 - (A2 B3 C1) i) i3 4 i 4 4
T12 - (A2 B3 C2) i) i 4 o 4 &
Symbol Meaning
{+ Increase & Decrease & No Change

30

CMU/SEI-2001-TR-025




7 Conclusions

A workshop for developing a componentization strategy for the RSS modernization effort
was convened at which participants considered different strategies for modernizing the legacy
system that would support an incremental development and deployment approach and
achieve the goal of implementing a modern software architecture.

The group eventually agreed on Trail Map 12 as the best option for modernization. In it,
componentization by application is followed by a restructuring of the database, and the sys-
tem is deployed as an operational system at the end of each phase.

The modernization strategy represented by this trail map can then be further developed. In
particular, it is necessary to

e identify and prioritize the development deployment cycles (based on technical considera-
tions first, and functionality second)

e identify groups of components that can be isolated and modernized during each incre-
mental development and deployment cycle

e identify the number and types of wrappers that must be developed, and use this informa-
tion to revise the cost estimation

The fact that the RSS team selected Trail Map 12 does not mean that it is the only appropriate
modernization strategy. Each trail map, like each modernization effort, has its own unique
characteristics. The purpose of this report was to evaluate a number of different options, and
furthermore, to suggest a strategy for solving this and similar problems. The strategy is sim-
ple—when choosing between several paths where the selection is not obvious, walk down
each path a hundred yards before deciding on the most appropriate route.

CMU/SELI-2001-TR-025 31




32

CMU/SEI-2001-TR-025



References

[Bobrowski 97]

[Comella 00]

[Weiderman 97]

Bobrowski, Steve & Smith, Gordon. Oracle8 Replication. Oracle
Corporation, December 1997.

Comella-Dorda, Santiago; Seacord, Robert C.; Wallnau, Kurt; &
Robert, John. “A Survey of Black-Box Modernization Approaches
for Information Systems,” 173-183. Proceedings of the International
Conference on Software Maintenance. San Jose, California, October
11-15, 2000. Los Alamitos, CA: IEEE Computer Society, 2000.

Weiderman, Nelson H.; Bergey, John K.; Smith, Dennis B.; & Tilley,
Scott R. Approaches to Legacy System Evolution (CMU/SEI-97-TR-
014). Pittsburgh, PA: Software Engineering Institute, Carnegie Mel-
lon University, 1997. Available WWW <URL:
http://www.sei.cmu.edu/publications/documents/97.reports/97tr014/
97tr014abstract.html> (1997).

CMU/SEI-2001-TR-025

33




34

CMU/SEI-2001-TR-025



Appendix:  Trail Maps

A trail map is a time-phased modernization approach, consisting of up to three phases, which
implements a set of the componentization options that we described in Section 5.2. In this
section we present the twelve trail maps that allow us to evaluate the various combinations of

componentization options.

Candidate Trail-T1 (A1 B1 C1)

In Trail Map T1, shown in Table 7, we first restructure the database and then we componen-
tize based on transactions. During the incremental development Phases 1 and 2, we deploy
the new system under development in parallel with the operational legacy system. Finally,
once the new system is complete (in Phase 3) we deploy it stand alone as the operational sys-
tem.

Figure 12 shows the system during Phase 1, with the operational system using the legacy da-
tabase and the new system using the restructured database—updating each other using Oracle
database triggers. During Phase 2 shown in Figure 13, functionality from the legacy system is
being migrated to the new system based on transactions.

Table 7:  Candidate Trail-T1 (A1 B1 C1)

Development Phase 1 Phase 2 Phase 3
Tasks
Restructure DB ! restructure —— restructure |—— restructure {—

[by transaction]: by transaction
Componentization OR OR
[by application i [ by application |

parailel ops | iparallel ops harallel ops

Deployment OR OR OR

operational operational ‘operational

Time

CMU/SEI-2001-TR-025 35

\ 4




Legacy Phase-1 Database

321 123 111

Table A | | Table B Table C

Triggers

Figure 12: T1 During Phase 1

/N

Transéction Shell

New Phase-2 Database )

\\‘”""‘Eﬁ'ﬁaft)leD ‘TasleE )
Oracle | [“Z‘l T -
"'5257‘ o -

Triggers

| }
! '
, Adapter }
Applications involved : :
intransaction. /' ( === 0—wTmT=mmemoos
206 (1118
123B ~=7
Oracle 23

Table D

Table A-{ | Table.B Table C

‘Table E

JBE Table F

Figure 13: T1 During Phase 2

New Database

36

CMU/SEI-2001-TR-025



Candidate Trail-T2 (A1 B1 C2)
In Trail Map T2, shown in Table 8, we first restructure the database and then componentize

based on transactions. During the incremental development phases, we deploy the new sys-

tem as the operational system.

Figure 14 shows the system during Phase 1 with the database tables being incrementally re-
structured. During Phase 2, shown in Figure 15, legacy functionality is being migrated to the
new system based on transactions.

Table 8: Candidate Trail-T2 (A1 B1 C2)

Development Phase 1 Phase 2 Phase 3
Tasks

Restructure DB —frestructure —— restructure |—— ré@tructy(re
Lby transaction |; {by.transaction.
Componentization OR OR

[ by application ]! | by application |
[parallel ops] i [|parallel ops] ﬁ)érallel ob.sl

Deployment OR____ ~——OR____ OR.
ioperational | foperational /
Time >

() e

TableD " Table E'Y Table B

Figure 14: T2 During Phase 1

CMU/SEI-2001-TR-025 37




Transaction Shell

<+ » Adapter .

[Frp— —_— -

Applications involved
in transaction

Figure 15: T2 During Phase 2

38 CMU/SEI-2001-TR-025




Candidate Trail-T3 (A1 B2 C1)

In Trail Map T3, shown in Table 9, we simultaneously restructure the database and compo-
nentize based on transactions. During the incremental development Phases 1 and 2, we de-
ploy the new system under development in parallel with the operational legacy system. Fi-
nally, once the new system is complete (in Phase 3), we deploy it stand alone as the
operational system. Figure 16 shows the system during Phase 1 with the operational system
using the legacy database, the new system using the restructured database, and the migration
of legacy functionality into the new system.

Table 9: Candidate Trail-T3 (A1 B2 C1)
Development Phase 1 Phase 2 Phase 3
Tasks
Restructure DB —restructure ——] restructure |——{régtructyre | —
restructure: rucy
[by transaction |
Componentization OR OR
[ by application |} [ by application |
R 7 \
fparallel.ops | |parallel ops| | |pérallel ohg|
Deployment OR —OR—— OR
ioperational: operational
Time —>
CMU/SEI-2001-TR-025 39




<

N

Transaction Shell

Legacy Functionali

Applications involtved
in transaction

—

Legacy Phase-1 Database

(@) @‘@

Oracle
Triggers

Table C

Table A

Table B

o

Figure 16: T3 During Phase 1

40

CMU/SEI-2001-TR-025



Candidate Trail-T4 (A1 B2 C2)

In Trail Map T4, shown in Table 10, we simultaneously restructure the database and compo-
nentize based on transactions, just as we did in Trail Map T3 with one exception: during the
incremental development Phase 1, we deploy the new system as the operational system.
Figure 17 shows the system during Phase 1 of construction, with the database being restruc-
tured and the migration of legacy functionality being moved into the new system.

Table 10: Candidate Trail-T4 (A1 B2 C2)

Development Phase 1 Phase 2 Phase 3
Tasks
Restructure DB —restructure —— r&structyfe ]————{réstructyfe
o Iby transaction i [by tra\u{actionl
Componentization OR
| by application |: | by aﬁplibation |
y 4 \
lpAraHel obsl [Dérallel ohs]
Deployment —OR—— OR f—OR—
toperational: / o erational

v

Time

CMU/SEI-2001-TR-025

4




Transaction Shell

Legacy Functionali

Applications involved
in transaction

Figure 17: T4 During Phase 1

Table D

>
Q.
Q
L]
(o
0]
-

EARPRN
£206:(111B
L

)

42

CMU/SEI-2001-TR-025



Candidate Trail-T5 (A1 B3 C1)

Trail Map T5 is shown in Table 11. In Phase 1, we componentize based on transactions, and
then in Phase 2 we restructure the database. During the incremental development Phases 1
and 2, we deploy the new system under development in parallel with the operational legacy
system. Finally, once the new system is complete (in Phase 3), we deploy it stand alone as the
operational system. Figure 18 shows the system during Phase 1. During this phase, function-
ality from the legacy system is being migrated to the new system based on transactions, and
updates between the two databases are performed using Oracle database triggers. During
Phase 2, shown in Figure 19, the operational system is using the legacy database and the new

system database is being restructured.

Table 11: Candidate Trail-T5 (A1 B3 C1)

CMU/SEI-2001-TR-025

Development Phase 1 Phase 2 Phase 3
Tasks
Restructure DB —{restructure |—
Fby transaction'| [by transaction]
Componentization OR OR
[by application i [ by application |
arallel’ops | 'parallélops
Deployment OR_ ,,_?,R o
operational] | [operational|] | foperational
Time >
43




N

Transaction Shell

Legacy Functionali

Applications involved
in transaction

> «—> E Adapter |

L Phase-1 Database
egacy Phas ab O_racle
321 123 111 Triggers
Table A
e —
Table Table C
Table B
\

Figure 18: T5 During Phase 1

New Database

44

CMU/SEI-2001-TR-025



N

Transaction Shell

Legacy Functionali

Applications involved

< in transaction

—

Legacy Phase-1 Database

> i Adapter |

Oracle
Triggers

Table D

Table B

New Database

Figure 19: T5 During Phase 2

CMU/SEI-2001-TR-025 45




Candidate Trail-T6 (A1 B3 C2)

In Trail Map T6, shown in Table 12, we first componentize based on transactions, and then
restructure the database. During the incremental development phases, we deploy the new sys-
tem as the operational system. Figure 20 shows the system during Phase 1 when legacy func-
tionality is being migrated to the new system based on transactions. During Phase 2, shown
in Figure 21, database tables are being incrementally restructured.

Table 12: Candidate Trail-T6 (A1 B3 C2)

Development Phase 1 Phase 2 Phase 3
Tasks
Restructure 08 —{restructure]-|—{restructure ——{rigirucife

o T

'by transaction | [by transaction|
Componentization OR OR
[by application ]; [by application |
7 \
[parallel ops| @érallel oNs|
Deployment —_OR™— ___OR™" OR—
foperational | foperational | /[operational
Time >
46 CMU/SEI-2001-TR-025



Transaction Shell

Legacy Functionali

Applications involved
in transaction

<«——» Adapter |
1

Table D

Figure 20: T6 During Phase 1

CMU/SEI-2001-TR-025




Transaction Shell

Applications involved
in transaction

Figure 21: T6 During Phase 2

Table K

48

CMU/SEI-2001-TR-025



Candidate Trail-T7 (A2 B1 C1)

In Trail Map T7, shown in Table 13, we first restructure the database and then componentize
based on applications. During the incremental development Phases 1 and 2, we deploy the
new system under development in parallel with the operational legacy system. Finally once
the new system is complete (in Phase 3), we deploy it stand alone as the operational system.

Figure 22 shows the system during Phase 1, with the operational system using the legacy da-
tabase and the new system using the restructured database—updating each other using Oracle
database triggers. During Phase 2, shown in Figure 23, functionality from the legacy system
is being migrated to the new system based on applications.

Table 13: Candidate Trail-T7 (A2 B1 C1)

Development Phase 1 Phase 2 Phase 3
Tasks
Restructure DB __estructure—— restructure|——{restructure |-
[by transaction | [by transaction |
Componentization OR —  OR—
[by application |{ iby.application.
iparallel’ops. | (parallelops | [parallel ops]
Deployment OR OR . OR——
‘operational,
Time —>
CMU/SEI-2001-TR-025 49




Table A

Legacy Phase-1 Database

() @‘@

Table C

Table B

New Phase-2 Database

Oracle
Triggers

Figure 22: T7 During Phase 1

50

CMU/SEI-2001-TR-025




Legacy Phase-1 Database

G2 @‘@

Oracle
Triggers

Table A M Table C

Table B k

Figure 23: T7 During Phase 2

New Database

CMU/SEI-2001-TR-025

51




Candidate Trail-T8 (A2 B1 C2)

In Trail Map T8. shown in Table 14, we first restructure the database and then componentize
based on applications. During the incremental development phases, we deploy the new sys-
tem as the operational system. Figure 24 shows the system during Phase 2 as legacy func-
tionality is being migrated to the new system based on applications.

Table 14: Candidate Trail-T8 (A2 B1 C2)

Development Phase 1 Phase 2 Phase 3
Tasks
Restructure DB _Irestructure restructure ——] restructure |—

[by transaction|i[by transaction|
Componentization OR —_ _OR—
[ by application |} Eby application:

paraliel'éps | iparallel ops parallel ops

Deployment OR OR — OR——
operational operational (operational
Time >
52 CMU/SEI-2001-TR-025




Figure 24: T8 During Phase 2

CMU/SEI-2001-TR-025 53




Candidate Trail-T9 (A2 B2 C1)

In Trail Map T9. shown in Table 15, we simultaneously restructure the database and compo-
nentize based on applications. During the incremental development Phase 1, we deploy the

new system under development in parallel with the operational legacy system. Finally, once
the new system is complete (in Phase 2), we deploy it stand alone as the operational system.

Figure 25 shows the system during Phase I, with the operational system using the legacy da-
tabase, the new system using the restructured database, and the migration of legacy function-

ality into the new system.

Table 15: Candidate Trail-T9 (A2 B2 C1)

Development Phase 1 Phase 2 Phase 3
Tasks
Restructure DB — | restructure —— restructure Eﬁtructvfe

[by transaction|

[by transaction |

Componentization OR
[ by application ]
4 \

parallel ‘ops | [parallel ops] [E)érallel ops|

Deployment OR ——OR—— OR—\
operational | loperational
Time >

54 CMU/SEI-2001-TR-025




Oracle  go1
Triggers

Table A

Figure 25: T9 During Phase 1

CMU/SEI-2001-TR-025 55




Candidate Trail-T10 (A2 B2 C2)

In Trail Map T10, shown in Table 16, we simultaneously restructure the database and compo-
nentize based on applications. just as we did in Trail Map T9 with one exception: during the
incremental development Phase 1, we deploy the new system as the operational system.
Figure 26 shows the system during Phase 1 of construction with the database being restruc-

tured and the migration of legacy functionality into the new system.

Table 16: Candidate Trail-T10 (A2 B2 C2)

Development Phase 1 Phase 2 Phase 3
Tasks
A \ 7 AV 7
Restructure DB - [Festructure ——{ regtructyfre | rextructyfe (—
\_/
_ [by transaction|i [by traNgaction|
Componentization OR
Eby application” | [by agplicktion |
/ \ / \
rallel o lgérallel oﬁ@]
Deployment OR™ OR OR
[operational. / operational / operational
Time —
56 CMU/SEI-2001-TR-025




Adapter |

MQ/EJB Bridge

Figure 26: T10 During Phase 1

CMU/SEI-2001-TR-025 57




Candidate Trail-T11 (A2 B3 C1)

Trail Map T11 is shown in Table 17. In Phase 1, we componentize based on applications, and
then in Phase 2, we restructure the database. During the incremental development Phases 1
and 2, we deploy the new system under development in parallel with the operational legacy
system. Finally, once the new system is complete (in Phase 3) we deploy it stand alone as the
operational system. Figure 27 shows the system during Phase 1. During this phase, function-
ality from the legacy system is being migrated to the new system based on applications, and
updates between the two databases are performed using Oracle database triggers. During
Phase 2, shown in Figure 28, the operational system is using the legacy database and the new

system database is being restructured.

Table 17: Candidate Trail-T11 (A2 B3 C1)

Development Phase 1 Phase 2 Phase 3
Tasks
Restructure DB restructure -—frestructuré ——|restructure
[by transaction]: [ by transaction|
Componentization —OR OR
tby-application. | [ by application|
Pparallel ops | [parallel ops
Deployment OR. OR. QR
operational | loperational
Time >
58 CMU/SEI-2001-TR-025




Legacy Phase-1 Database

Oracl
@ @‘@ Trirgagce$s 501

Table B

mgi

Figure 27: T11 During Phase 1

CMU/SEI-2001-TR-025 59




Table B

Oracle
Triggers

BO 1

Figure 28: T11 During Phase 2

60

CMU/SEI-2001-TR-025



Candidate Trail-T12 (A2 B3 C2)

In Trail Map T12, shown in Table 18, we first componentize based on applications and then

restructure the database. During the incremental development phases, we deploy the new sys-
tem as the operational system. Figure 29 shows the system during Phase 1, when legacy func-
tionality is being migrated to the new system based on transactions.

Table 18: Candidate Trail-T12 (A2 B3 C2)

Development Phase 1 Phase 2 Phase 3
Tasks
T \ v A
Restructure DB — restructure 'restruCture! re\{ruct;fe —
| by transaction} [by transaction]
Componentization —OR— OR
fby application:i | by application |
y 4 \
parallel ops | [parallel ops| | |pArallel ofs|
OR OR f— orR—\
Deployment e <.\ S \
[operational | [operational / [operational\
Time >
CMU/SEI-2001-TR-025 61




123

Figure 29: T12 During Phase 1

1
i
1
i
i
i

MQ/EJB Bridge

62

CMU/SEI-2001-TR-025



REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate tor information Operations
and Reports, 1215 Jetferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Oftice of Management and Budget, Paperwork Reduction Project (0704-
0188), Washington, DC 20503.

1. AGENCY USE ONLY 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
(Leave Blank) July 2001 Final

4.  TITLE AND SUBTITLE 5. FUNDING NUMBERS
Legacy System Modemnization Strategies F19628-00-C-0003

6. AUTHOR(S)
Robert C. Seacord, Santiago Comella-Dorda, Grace Lewis, Pat Place, Dan Plakosh

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Software Engineering Institute REPORT NUMBER
Carnegie Mellon University CMU/SEI-2001-TR-025
Pittsburgh, PA 15213

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY
HQ ESC/XPK REPORT NUMBER
5 Eglin Street ESC-TR-2001-025
Hanscom AFB, MA 01731-2116

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT 128 DISTRIBUTION CODE
Unclassified/Unlimited, DTIC, NTIS

13. ABSTRACT (MAXIMUM 200 WORDS)
Modernization of legacy enterprise systems introduces many challenges due to the size, complexity, and frailty of the
legacy systems. Size and complexity issues often dictate that these systems are incrementally modernized, and new
functionality is incrementally deployed before the modernization effort is concluded. This in turn requires that legacy
components operate side by side with modernized components in an operation system—introducing additional prob-
lems.
In this report we discuss some alternative development approaches for incrementally modernizing legacy systems, in-
cluding consideration of the advantages and disadvantages of each approach. These development alternatives can be
mapped against the peculiarities of a particular modernization effort to recommend an appropriate approach.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Legacy system modernization, incremental development and deployment, incre- 74
mental modernization.

16. PRICE CODE

17. SECURITY CLASSIFICATION OF 18. SECURITY CLASSIFICATION OF 19. SECURITY CLASSIFICATION OF 20. LIMITATION OF ABSTRACT
REPORT THIS PAGE ABSTRACT UL
Unclassified Unclassified Unclassified

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102




